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Abstract
Data streams refer to data sequences generated at a high rate over a continuous period, such as social media analysis, financial
transaction monitoring, and sensor data processing. Most existing data stream mining methods make assumptions about the
feature space, assuming it is either fixed or undergoes regular changes, such as trapezoidal or evolving data streams. However,
these restrictions do not hold for real-world applications where data streamsmay exhibit arbitrary missing features. To address
the issue of arbitrary missing features in the feature space, we propose the Online Learning from Capricious Data Streams
(OLCDS) algorithm and its variant, OLCDS-I. Specifically, OLCDS first identifies the higher uncertainty features that can
provide more information for the optimization model. Then, based on the shared and new feature space, we formulate the
constrained optimization problem using the soft margin technique.We deduce the update rules and usemodel sparsity to retain
the essential features for classifier learning. Compared to existing online learning approaches, our new method eliminates
the need for feature space assumptions and avoids generating missing features. Extensive experiments compared with five
state-of-the-art methods on ten real-world datasets demonstrate the effectiveness and efficiency of our new algorithms

Keywords Online learning · Dynamic feature spaces · Capricious data streams

1 Introduction

Online learning is an efficient method for dealing with
dynamic data, which involves repeated interaction between
a learner and an environment with an underlying state [1].
The learner predicts the question and the true answer is
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revealed. A loss is incurred based on the disparity between
the learner’s prediction and the answer. The primary objec-
tive of the learner is to minimize the cumulative loss over all
rounds [2]. As the volume of data grows exponentially, many
online learning methods have been developed for process-
ing streaming data [3]. Meanwhile, most of these methods
assume each streaming instance has a fixed feature space
[4, 5]. However, their features may be missing in practical
applications for some reasons. For example,when sensors are
damaged, or the network is abnormal in ecosystem detection
[6], real-time network intrusion [7], and environmental data
monitoring [8], their feature spaces will continue to change
with the continuous growth of instances. Therefore, online
learning on doubly-streaming data (streaming features and
instances) is a boiling research problem [9–13].

Doubly-streaming data refers to the increase of both
data volume and data dimensions over time [9]. In gen-
eral, doubly-streaming data has three essential characteristics
[14]. (1) Lack of eigenvalue space is arbitrary and irregular,
and the features that appeared before may disappear as the
number of instances increases. For example, patient profiles
are often derived from different testing devices and health-
care providers [15]. Due to factors such as individual medical
characteristics, equipment failure, etc., the collected features
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are usually incomplete and arbitrarily missing. (2) The dis-
tribution of dynamically unbalanced classes. For example,
in an anomaly detection system [16], there are only a few
anomalies, most of which are normal. (3) Concept drift
often occurs, e.g., sudden or gradual drift due to arbitrary
changes in data streams [17–19]. Therefore, the challenge
of doubly-streaming online learning is dealing with the arbi-
trary absence of feature space, dynamically unbalanced class
distribution, and concept drift simultaneously.

As shown in Fig. 1, assume that the instances at times-
tamps t1 and t2 are x1 and x2, respectively. From Fig. 1, it
is apparent that x2 exhibits disappearing features, indicated
by the blank, which signifies the absence of certain features
compared to the previous moment (x1). Additionally, new
features have emerged, denoted by the green. The gray rep-
resents the shared feature space, consistent with the previous
moment. We refer to the above doubly-streaming data as
capricious data streams where data dynamically changes in
volume and feature dimension [20]. The problem of online
learning from capricious data streams is muchmore complex
than traditional online learning problems. In other words,
traditional online learning algorithms cannot handle capri-
cious data streams because the feature space is generally
assumed to be unchanged [21–23]. Therefore, the main chal-
lenge of learning fromcapricious data streams is dynamically
designing classifiers that can learn from increasing training
instances with capricious feature spaces.

Recently, a few related studies have attempted to address
doubly-streaming online learning problems, including Online
Learning with Streaming Features (OLSF) [9], Feature
Evolvable StreamingLearning (FESL) [10],OnlineLearning
from varying Features (OLVF) [11], and Generative Learn-
ing with Streaming Capricious (GLSC) [20]. However, they
have some limitations. Specifically, OLSF can only process
the trapezoidal data streams, and FESL can only process the
evolvable feature data streams (change regularly). OLVF is
used to deal with varying feature spaces but cannot handle
arbitrary missing features. GLSC can handle capricious data

streams by constructing a model on a shared feature space
that incorporates historical and new features. Consequently,
GLSC’s time complexity is relatively higher. Motivated by
this, this paper proposes a novel online learning algorithm to
handle arbitrarilymissing feature spaces of doubly-streaming
online learning. Our proposed algorithms, namely OLCDS
and its variant, OLCDS-I, offer a novel approach that elimi-
nates the need for any assumptions on the feature space and
avoids generating missing features.

Specifically, we aim to construct an efficient classifica-
tion model using the incomplete feature space. Upon the
arrival of capricious data streams, we receive new streaming
instances and extract the shared and newly emerging feature
space between the current and previous instances. Then, we
project the weight vector wt of the classifier and the new
arriving instance xt onto the shared and new feature space,
respectively. To make predictions, we compute confidences
for the shared and the new feature space and subsequently
calculate their predicted values. We employ a feature space
confidence metric to identify the most informative observed
features. By leveraging thismetric, our algorithms effectively
handle data streams with arbitrary changes in the feature
space. We quantify the loss between predicted and actual
values by employing a loss function. Finally, we update the
model based on the calculated loss. This iterative process
allows us to refine the classification model and improve its
accuracy continually. The main contributions of this paper
are as follows:

– Two new methods are proposed to handle the issue of
online learning from capricious data streams. These two
algorithms do not rely on any assumptions about the
feature space and can effectively handle arbitrary miss-
ingness in the feature space. Since our new methods
eliminate the need for feature space assumptions, they
are closer to practical application requirements.

– We formulate the constrained online optimization prob-
lem based on the shared and new feature space by
identifying higher uncertainty features. Since our new

Fig. 1 Illustration of capricious
data streams. x1, x2, ..., xn are
the streaming instances, while
f1, f2, ..., fm are the streaming
features. The feature spaces may
differ (features disappear or
emerge) for different instances,
such as x1 and x2
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methods avoid generatingmissing features, they aremore
efficient than existing online learning algorithms. Addi-
tionally, we conducted a thorough theoretical analysis to
determine the upper bound of the cumulative hinge loss.

– Extensive experiments are conducted on ten real-world
datasets comparedwith online learningmethods for fixed
feature space, trapezoidal, and capricious data streams.
Experimental results of statistical tests indicate the effec-
tiveness of our proposed algorithms.

The rest of this article is organized as follows. In Section 2,
we describe related work. Section 3 provides a formal defini-
tion of the problem. Section 4 presents the proposed OLCDS
and OLCDS-I algorithms in detail. Section 5 gives the the-
oretical analysis. Section 6 conducts extensive experiments.
Section 7 discusses the advantages and disadvantages of our
new method. Finally, Section 8 concludes the paper.

2 Related work

This paper focuses on online learning from capricious data
streams. We mainly review the related works from the fol-
lowing two aspects: online learning from static feature space
and online learning from dynamic feature space.

2.1 Online learning from static feature space

Online learning is a dynamic process where the learner
receives a training example in each round, akin to a question
with a concealed answer [2]. Over the years, numerous algo-
rithms have been devised and utilized for online learning to
optimize the learning process and improve prediction accu-
racy. These algorithms encompass various techniques and
methodologies, each with strengths and limitations. Their
application in online learning has led to significant advance-
ments in various domains.

In online learning, first-order algorithms utilize the infor-
mation from the first-order derivatives to update the model
parameters. Two commonly employed first-order algorithms
are the Perceptron algorithm [24, 25] and the Online Gradi-
ent Descent (OGD) [26] algorithm. These algorithms have
found wide application and have proven effective in various
learning tasks.

On the other hand, second-order online learning algo-
rithms leverage the second-order derivative information to
explore the underlying structure between features better.
By considering the curvature of the space, these algo-
rithms enhance convergence and can minimize quadratic
functionswithin a limited number of steps. Notable represen-
tatives of second-order online learning algorithms include the
Second-Order Perceptron [27], the Normal Herding method
via Gaussian Herding (NHERD) [28], the Confidence-

Weighted learning and Soft Confidence-Weighted algorithm
(SCW) [29], the Adaptive Regularization of Weight Vectors
(AROW) [30], and a New variant of Adaptive Regulariza-
tion (NAROW) [31]. These second-order algorithms have
demonstrated their efficacy in capturing complex relation-
ships and exploiting the underlying structure of the data.
They offer improved convergence rates and can be advan-
tageous when dealing with non-linear or highly correlated
features. Their utilization of online learning has contributed
to advancements in various research and application areas.

However, these online learning algorithms mentioned
above, regardless of whether they use first-order or second-
order gradients, face a limitation in handling data streams
with arbitrary changes in feature space. This limitation arises
from their assumption that the feature space remains fixed
and does not undergo any changes. Although these algo-
rithms can improve performance, this assumption does not
hold in real-world applications.

2.2 Online learning from dynamic feature space

The dynamic feature space means that the feature space of
the data streams is constantly changing. In general, online
learning from a dynamic feature space is more challenging.

Specifically, Zhang et al. [9] were the first to deal with
trapezoidal data streams where the volume and feature
dimensions of the data increase simultaneously. They pro-
posed OLSF with its Variants OLSF-I and OLSF-II. OLSF
first divides the features of the current training instance
into historical features and new features. Then, a classifier
updates historical features and new features by following
different update rules. Recently, a few works have been pro-
posed to learn from data streams with varying feature space,
where features would vanish or occur over time. For exam-
ple, Hou et al. [10] proposed the FESL algorithm. FESL first
recovers historical data features through a mapping func-
tion in which both the learned historical features and new
features exist, and then, it learns two models from the fea-
tures of the above two parts. Finally, ensemble learning is
used to make the final prediction. Based on FESL, Zhang
et al. [12] and Hou et al. [13] conducted in-depth exploration
and expansion of FESL scenarios and proposed evolutionary
difference minimization (EDM) [12] and prediction based
on unpredictable feature evolution (PUFE) [13] to deal with
feature space of algorithmic variations for different situa-
tions in data streams. Besides, Beyazit et al. [11] proposed
the OLVF will project the existing model and the current
instance onto shared feature space and make a prediction.
He et al. [20] proposed the GLSC algorithm, which estab-
lishes the relationships between historical and new features
by constructing a model on a universal feature space. Zhou
et al. [32] proposed an online subspace learning method for
uncertain feature data streams. Specifically, themethodmaps
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heterogeneous feature instances into a low-dimensional sub-
space and then learns a classifier in this latent subspace.
Gu et al. [33] proposed an algorithm for solving the prob-
lem of incremental feature space learning with label scarcity
(FLLS), which uses an active learning strategy to select valu-
able instances for annotation and build a superior prediction
model with minimal supervision. He et al. [34] proposed
an online learning algorithm called OCDS to handle data
streams with constantly changing feature spaces. Unlike tra-
ditional methods, OCDS does not make any assumptions
about the dynamics of feature spaces. It adds newly emerged
features to the general feature space by building a correla-
tion graph model between features. Liu et al. [35] proposed
an online active learning algorithm that combines an active
query strategywith a passive-aggressive (PA) update strategy
to handle binary andmulti-class online classification tasks on
trapezoidal data streams.

In addition, Wang et al. [36] proposed an improved noise-
resistant adaptive long short-term memory neural network
(ANA-LSTM) model for reliable prediction of the remain-
ing life of lithium-ion batteries. The model has highly robust
feature extraction and optimal parameter characterization.
Wang et al. [37] proposed an improved multi-time scale
singular filter-Gaussian process regression-long short-term
memory (SF-GPR-LSTM) model for estimating the remain-
ing capacity of lithium-ion batteries throughout their life
cycle, adapting to rapid aging and multiple current changes.
The model achieves rapid evaluation of battery performance
by optimizing the multi-task training strategy.

However, the existing algorithms mentioned above can-
not effectively handle data streams that undergo arbitrary
changes in the feature space. This limitation arises from the
assumption made by these algorithms that the feature space
remains constant or changes predictably. Although a few
algorithms can address data streams with arbitrary changes
in the feature space, they do so at the expense of additional
computational time, as they require the generation ofmissing
features.

3 Problem definition

This section presents the formal definition of traditional
online learning and online learning from capricious data
streams. We summarize some symbols used in this paper
in Table 1.

3.1 Traditional online learning

We consider using a linear classifier for binary classification.
Over time, data instances gradually arrive. At each round t ,

Table 1 Summary on mathematical notations

Notations Definition

xt the instance at round t

dt dimension of instance xt

ds
t dimensions of xt on shared feature space

dn
t dimensions of xt on new feature space

Rdt the feature space of xt

T T ∈ N+, the number of total iteration

u u ∈ Rdt , arbitrary vector in Rdt

wt wt ∈ Rdt−1 ,classifer build at round t-1

yt yt ∈{-1,+1},true label of xt

lt lt=max{0,1-yt (xt · wt )}, hinge loss on instance xt

ŷt ŷt ∈{-1,+1},predicted label of xt

xd
t the disappearing feature of xt and xt−1

xs
t the shared feature of xt and xt−1

xn
t the new feature of xt and xt−1

ws
t Projection of wt on xs

t

wn
t Projection of wt on xn

t

hi
t the informativeness of the i-th feature in instance xt

ps
t the confidence of the feature on the shared feature space

pn
t the confidence of the feature on the new feature space

ξ slack variable

τ learning rate variable

ε a constant about ps
t and pn

t

λ λ > 0, regularization parameter of calssifier

C C > 0, penalty cost parameter

B B ∈(0,1], proportion of selected features

the algorithm receives an instance xt and predicts the true
label yt ∈{+1,-1} of the instance xt using its classifier wt .
The prediction uses the function ŷt = sign(xt ·wt ). After pre-
diction, display the true label of instance xt . Calculate their
loss l(yt , ŷt ) based on the difference between the predicted
value ŷt and the true value yt .

Currently, the widely used loss function is the Hinge loss
function [38–40] defined as l(yt , ŷt ) = max{0, 1 − y(xt ·
wt )}. It is based on the margin between the instance xt and
the classifier wt . The margin is calculated by yt (xt · wt ).
Since online learning involves incremental tasks, minimizing
the loss while making minimal changes to the current model
is crucial. This approach ensures that knowledge from previ-
ous instances is preserved.Moreover, in the presence of noisy
data, insisting on perfect predictions for every instance can
lead to overfitting and limited generalization. Instead, train-
ing a classifier that can effectively separate large amounts of
data while disregarding noise is preferable. To achieve this,
soft decision margins [41] are utilized, allowing the clas-
sifier to tolerate some errors. Based on these, many online
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learning algorithms combine these constraints and frame
weight learning as an optimization problem as follows:

wt+1 = argmin
w:lt <ξ

1

2
‖w − wt‖2 + Cξ, (1)

where (1) introduces slack variables to the discriminator,
introducing nonlinearity and allowing a controlled level of
error, denoted by ξ . The parameter C adjusts the slackness
of the constraint. Considering the presence of noise in real-
life data, soft-edgemethods are employed for model learning
across diverse feature spaces.

3.2 Online learning from capricious data streams

First of all, we define capricious data streams as follows:

Definition 1 [Capricious Data Streams]
Let D = {x1, x2, . . . , xn} be the streaming instances, and

Ft = { f1, f2,…, fdt }, Ft ∈ Rdt is the feature set carried by
instance xt . Two streaming instances, xi and x j , their feature
spaces are denoted as Fi and Fj . If a feature, f j , is present
in Fj but absent in Fi , it is considered a new feature. Con-
versely, if a feature, fi , exists in Fi but not in Fj , it is referred
to as a disappearing feature. If Fi and Fj are not identical,
we define D as capricious data streams.

Then, we present the formal definition of online learning
from capricious data streams as follows:

Definition 2 [Online Learning from Capricious Data Streams]
Consider capricious data streams D = {(xt , yt )

∣
∣t =

1, 2, . . . T } as a sequence of training instances, where xt ∈
Rdt represents the instance xt of dt dimensions, and yt ∈

{-1,+1} represents the ture class label. During the t-th iter-
ation, the learner observes the instance xt and provides its
prediction ŷt . Then, the true label yt is revealed, and the
learner suffers a momentary loss, reflecting the discrepancy
between the prediction and the ground truth. Online Learning
from Carpicious Data Streams aims to construct an efficient
classification model using the incomplete feature spaces of
data streams.

4 The proposedmethod

This section first presents the details of problem analysis
and solutions for the issue of online learning from capricious
data streams. Then, we propose the new algorithm OLCDS
in detail and give the complexity analysis of it.

4.1 Problem analysis and solutions

Online learning from capricious data streams presents sig-
nificant challenges due to the unpredictable nature of the
data-the lack of consistency in the feature space results in
considerable degradation of classifier performance. The pri-
mary reason for this decline is that the new feature space
lacks prior knowledge and can only rely on the known fea-
ture space formaking predictions.Additionally, disappearing
features further compound the problem as they do not con-
tribute valuable information to update the classifier. Online
learning from capricious data streams is inherently difficult
and poses substantial obstacles.

The flow chart of our new method is shown in Fig. 2. To
enhance prediction accuracy, the feature space of xt is parti-
tioned into two segments based on the presence of the feature

Fig. 2 The flow chart of our
new method
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in xt and the preceding instance. These segments are referred
to as shared and new feature spaces denoted as Rs and Rn

respectively. At the t-th iteration, we project wt on Rs and
Rn , which are represented asws

t andwn
t respectively. A step-

by-step, in-depth analysis of the problem and corresponding
solutions follow.

4.1.1 Estimating the informativeness of features
from arbitrarily varying feature spaces

To enhance the learning process and optimize the model,
we propose an uncertainty-based adaptive weighting strat-
egy for dynamically learning the capricious data streams.
The rationale behind this strategy is that features with higher
uncertainty tend to contain more valuable information for
model optimization [42, 43]. We leverage the variance of
features during the iterative process to assess their uncer-
tainty. A feature with a more considerable variance indicates
higher uncertainty and can offer more information for the
optimization model. Notably, the variance solely depends on
the instance and remains unaffected by external factors. Thus,
we utilize variance as a proxy for uncertainty to evaluate fea-
ture informativeness.

Specifically, after projecting the training instances into the
feature space, we compute the cumulative average of feature
information as the confidence level of the feature space. This
confidence level is the weight assigned to the feature space
in the prediction results. During iteration t , we denote hi

t as
the amount of information associated with the i-th feature in
the instance xt . Consequently, the confidence levels for the
shared feature space ps

t and the new feature space pn
t can be

defined as follows:

ps
t =

ds
t∑

i=1

hi
t

dt∑

j=1
h j

t

, (2)

pn
t =

dn
t∑

i=1

hi
t

dt∑

j=1
h j

t

, (3)

where ds
t and dn

t are the dimensions of the shared feature
space and the new feature space respectively.

4.1.2 Learning from supervised loss

Linear classifiers are generally used for binary classifica-
tion. When receiving an instance xt , predict the true label
yt ∈{-1,+1} of the instance xt bt using its classifierwt . After
the prediction is completed, the true label of the instance
xt is displayed. Then, we update the model by calculat-
ing the difference between the predicted value ŷt and the

true value yt using the loss function l(yt , ŷt ). One of the
most widely used loss functions is the Hinge loss defined as
l(yt ,ŷt )=max{0,1-yt (xt · wt )}, which is based on the margin
between the instance xt and the classifier wt .

In order to adapt the classifier to the dynamic nature of the
capricious data streams, we modify the hinge loss to train a
classifierwt . We define the loss lt of the classifier at iteration
t as :

lt = l(yt , ŷt ) = max{0, 1−yt (ps
t ·ws

t ·xs
t + pn

t ·wn
t ·xn

t )}. (4)

In online learning tasks, the goal is to minimize the
cumulative loss by constructing and adjusting the weights
of each observed instance. However, this approach can be
sensitive to noise and may result in overfitting. Therefore, a
soft margin technique has been widely adopted to overcome
this limitation. This technique introduces a slack variable
ξ , where ξ ∈[0, 1] allows for a certain level of misclas-
sification. Many online learning algorithms combine the
abovementioned constraints to address the trade-off between
maximizing accuracy and minimizing the loss. They for-
mulate the learning of weights as an optimization problem,
where the objective is to find the optimal weights that min-
imize the loss while considering the soft margin constraint.
By formulating the problem, these algorithms balance fitting
the training data and generalizing well to unseen instances.

Therefore, by using (1) and (4), our learning task can be
formulated as a constrained optimization problem:

wt+1 = argmin
w=[ws ,wn ]:

lt ≤ξ

1

2

∥
∥ws − ws

t

∥
∥2 + 1

2

∥
∥wn

∥
∥2 + Cξ, (5)

where ws represents a projection of the feature space from
dimension dt to dimension dt−1 (it is a vector consisting of
elements ofwt+1 which are in the same feature space ofwt ),
wn denotes the vector consisting of elements of wt+1 which
are not in the feature space of wt , ws

t represents projection
of wt on xs

t , C > 0 is a penalty cost parameter, ξ is a slack
variable, and lt = l(yt , ŷt ) = max{0, 1 − yt (ps

t · ws
t · xs

t +
pn

t · wn
t · xn

t ).

4.1.3 Derive updating rules

Weuse aLagrangian functionwithK.K.T. conditions to solve
the optimization problem of the above inequality and get the
following updated rules:

ws = ws
t + τ ps

t yt x
s
t

wn = τ pn
t yt x

n
t

η = C − τ (6)
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Using these conditions, we can get the representation of
our problem and find τ :

L(τ ) = 1

2
τ 2(ps

t )
2
∥
∥xs

t

∥
∥2 + 1

2
τ 2(pn

t )2
∥
∥xn

t

∥
∥2

+τ(1 − yt (ps
t · ws

t · xs
t + pn

t · wn
t · xn

t )) (7)

τ = min{C,
lt

(ps
t )

2
∥
∥xs

t

∥
∥
2 + (pn

t )2
∥
∥xn

t

∥
∥
2 } (8)

The objective function of (5) is linearly proportional to ξ .
Although it can solve the over-fitting problem, its numeri-
cal stability is poor, and its punishment for significant errors
is minor, thus affecting classification accuracy. Because the
square of the slack variable ξ can effectively solve these prob-
lems. Therefore, our optimization problem uses the square
of the slack variable ξ as follows:

wt+1 = argmin
w=[ws ,wn ]:

lt ≤ξ

1

2

∥
∥ws − ws

t

∥
∥
2 + 1

2

∥
∥wn

∥
∥
2 + Cξ2. (9)

We also use a Lagrangian function with K.K.T. conditions
to solve the optimization problem of the above inequality and
get the following updated rules:

ws = ws
t + τ ps

t yt x
s
t

wn = τ pn
t yt x

n
t

2Cξ = τ (10)

Putting (10) into (9), we can get the following formula:

L(τ ) = 1

2
τ 2(ps

t )
2
∥
∥xs

t

∥
∥2 + 1

2
τ 2(pn

t )2
∥
∥xn

t

∥
∥2 (11)

+τ(1 − yt (ps
t · ws

t · xs
t + pn

t · wn
t · xn

t ) − τ

4C
),

τ = min{C,
lt

(ps
t )

2
∥
∥xs

t

∥
∥
2 + (pn

t )2
∥
∥xn

t

∥
∥
2 + 1

2C

}. (12)

To sum up, we can derive the update rules as follows:

wt+1 = [ws
t+1, w

n
t+1] = [ws

t+1+τt ps
t yt x

s
t , τt pn

t yt x
n
t ], (13)

where τt =
⎧

⎨

⎩

min{C, lt
(ps

t )
2‖xs

t ‖2+(pn
t )2‖xn

t ‖2 } (OLCDS)

min{C, lt
(ps

t )
2‖xs

t ‖2+(pn
t )2‖xn

t ‖2+ 1
2C

} (OLCDS-I)

Based on these two cases of τt , we propose two new algo-
rithms named OLCDS and OLCDS-I in Section 4.3.

4.2 Model sparsity

The infinite nature and high dimensions of data streams
present challenges when retaining all features in a classifier.

Doing so can lead to a degradation in classifier performance
due to increased memory requirements and computational
expenses. To address this issue, it becomes necessary to select
and retain only themost essential features for classifier learn-
ing by intercepting wt .

One commonly used approach is to truncate the classi-
fier after projecting it onto the L1 sphere. However, this
truncation strategy can introduce a bias towards infrequent
features in the data stream. These features tend to have
smaller weights and are more easily truncated. Moreover,
small changes in the weights of features with high uncer-
tainty can result in different outcomes. Therefore, retaining
the most significant features is crucial while avoiding bias
towards features that occur in only a few instances.

We incorporate relative uncertainty into the feature selec-
tion process to address this concern. When features exhibit
higher uncertainty, we prioritize retaining their weights
to capture their potential significance. In practice, this is
achieved through a projection process that involves the fol-
lowing steps:

wt = min

{

1,
λ

〈wt · Ht 〉
}

wt , (14)

whereλ is a regularization parameter that truncateswt to give
the model good sparsity. Ht=[h1

t , h2
t , h3

t , …, h p
t ] represents

the relative uncertainty vector of the public feature space
at the t-th iteration, which is composed of the information
content of all observed features. After the update operation is
completed, projection and truncation are introduced to prune
redundant features based on parameter B, where B ∈ (0, 1].

4.3 The proposed algorithm

Based on the above analyses and solutions, we propose a
novel Online Learning algorithm specifically designed to
handle Capricious Data Streams, named OLCDS, as shown
in Algorithm 1.

Specifically, our new algorithms have three parameters,
λ, C , and B, that indicate the penalty parameter, the regu-
larization parameter, and the proportion of selected features,
respectively. wt is the weight vector of the latest classifier,
where t is the timestamp during online learning. In Step 2,
we receive a new instance xt at timestamp t . Step 3 identi-
fies the shared and new feature space as Rs and Rn between
xt−1 and xt . In Step 4, the weight vector wt and instance
xt are projected to the shared feature space Rs and the new
feature space Rn , respectively. Next, Step 5 calculates the
confidence values in the shared and new feature space using
formula (2) and formula (3), respectively. In terms of these
confidence values, the predicted value ŷt of the instance xt is
calculated in Step 6. Then, the true label yt of the instance xt
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Algorithm 1 OLCDS and Its Variants OLCDS-I.
Input:

C > 0: the penalty parameter;
λ > 0: the regularization parameter;
B ∈ (0, 1]: the proportion of selected features;

Onput:
wt : the latest classifier;

Initialize:
w1 = {0, 0, . . . , 0} ∈ Rd1 ;

1: For t=1, 2, …, T do
2: Receive instance: xt ∈ Rdt ;
3: Identify shared and new feature spaces as: Rs = Rxt−1 ∩ Rxt ,

Rn = Rxt − Rs ;
4: Project wt , xt onto Rs , Rn as: ws

t , w
n
t , xs

t , w
n
t ;

5: Calculate the confidence of features as: ps
t and pn

t ;
6: Predict: ŷt =sign(ps

t · ws
t · xs

t +pn
t · wn

t · xn
t );

7: Receive true label: yt ∈{-1,+1};
8: Suffer loss: lt=max{0,1-yt (ps

t · ws
t · xs

t + pn
t · wn

t · xn
t )};

//Model Update

9: set:τt =
⎧

⎨

⎩

min{C, lt
(ps

t )
2‖xs

t ‖2+(pn
t )2‖xn

t ‖2 } (OLCDS)

min{C, lt
(ps

t )
2‖xs

t ‖2+(pn
t )2‖xn

t ‖2+ 1
2C

} (OLCDS-I)

10: wt+1 = [ws
t + τt ps

t yt xs
t , τt pn

t yt xn
t ];

//Model Sparsity

11: Project wt = min
{

1, λ
〈wt ·Ht 〉

}

wt

12: truncate wt based on B;
13: End For

is obtained in Step 7. Subsequently, the loss between the pre-
dicted value ŷt and the true value yt is calculated by formula
(4) in Step 8. To update the model in real-time, Steps 9-
10 outline the specific update strategies of the OLCDS and
OLCDS-I algorithms. These strategies adaptively adjust the
model based on the observed instances and their associated
losses. Finally, in Steps 11-12, the weight vector wt is trun-
cated using parameter B. The model only processes part of
the critical data. Therefore, introducing the sparsity of the
model can improve its efficiency.

In summary, Algorithm 1 presents a comprehensive
framework for effectively handling capricious data streams
in online learning. The algorithm achieves accurate predic-
tions by dynamically adapting the model based on incoming
instances while maintaining model sparsity through feature
selection.

4.4 Algorithm complexity

Algorithm 1 presents the pseudocode for OLCDS and its
variant, OLCDS-I. Regarding time complexity, for a single
iteration, |xt | is the number of features observed in the current
training instance, and |wt | is the number of features in the
current classifier. Since identifying and projecting features
into feature space is related to the classifier and the training
instance, the time complexity of identifying features and pro-
jecting them into feature space is O(|wt | + |xt |). Therefore,

for a single iteration, we know that the time complexity of
the OLCDS and OLCDS-I algorithm are O(|wt |+ |xt |). This
indicates that the runtime of both two algorithms is linear to
the size of the weight vector wt and the incoming instance
xt .

Regarding space complexity, themain space requirements
of the entire algorithm in each iteration come from two
aspects: storing the weight vector wt and storing the cur-
rent instance xt . Suppose the maximum dimension is m, so
the space complexity of our new algorithm is O(m). Since
our algorithm does not need to cache all samples, its space
complexity is very low.

OLCDS andOLCDS-I are designed to process and update
the model efficiently based on the observed instances, ensur-
ing that the computational overhead remains manageable
evenwith large-scale datasets. The linear runtime complexity
of OLCDS and OLCDS-I allow for effective online learning,
making them suitable for real-time applicationswhere timely
model updates are crucial.

5 Theoretical analysis

In this section, we utilize regret from online learning as a
metric to evaluate the performance of the OLCDS algorithm.

Initially, we examine the upper bound of the cumulative
hinge loss of OLCDS in an ideal scenario where the learner
can accurately predict each instance. We then extend and
derive this upper bound as linearly inseparable. Addition-
ally, we present error rate bounds for each class in OLCDS.
These bounds ensure that our algorithm consistently achieves
a lower cumulative hinge loss compared to the best-fixed pre-
diction, which is chosen retrospectively for any sequence of
instances.

When a learner incorrectly predicts an instance during
iteration t , we observe that yt (ps

t w
s
t xs

t + pn
t wn

t xn
t ) >0, and

the loss function lt >1. As a result, the cumulative hinge

loss
T∑

t=1
lt is an upper bound of the number of misclassified

instances. We represent the loss of offline predictor during
iteration t as lx

t , which is defined as follows:

lx
t = l(wxt ; (xt , yt )) (15)

Where w ∈ Ru represents an arbitrary vector, and wxt

represents the projection of w on xt . This notation also
applies to wwt , wwt+1 , wws

t , wxn
t , wxs

t and wxn
t . Then, we

have Lemma 1 as follows.

Lemma 1 Let (x1, y1), . . . , (xT , yT ) be a sequence of train-
ing data, where xt ∈ Rdt and yt ∈{+1,-1} for all t . Let
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learning rate τt = min{C, lt
(ps

t )
2‖xs

t ‖2+(pn
t )2‖xn

t ‖2 } , as given

in (8). The following bound holds for any w ∈ Ru:

T
∑

t=1

{τt {2lt −2

ε
lx
t − 2(ε − 1)

ε
− τt [(ps

t )2
∥
∥xs

t
∥
∥2+ (pn

t )2
∥
∥xn

t
∥
∥2]}}≤‖w‖2 .

(16)

Proof 1 Let’s define �t to be ‖wt −wwt ‖2-‖wt+1−wwt+1‖2.
In order to prove the lemma, we need to bound the sum of all
�t over T. It is worth noting that the

∑
�t can be simpli-

fied using the telescoping property, leading to the following
expression:

T −1
∑

t=1

�t =
T −1
∑

t=1

(‖wt − wwt ‖2 − ‖wt+1 − wwt+1‖2)

= ‖w1 − ww1‖2 − ‖wt+1 − wwt+1‖2
≤ ∥

∥ww1
∥
∥
2
. (17)

This establishes an upper limit for
∑

�t . Moving forward,
we will present a lower limit for individual �t .

If an example xt is classified correctly, it means that the
values of lt and τt are both 0, and the classifier remains
unchanged. However, let’s now consider the scenario where
the learner fails to satisfy the minimum margin requirement,
indicated by lt > 0. In such cases, we can gather insights
from the confidences obtained through solving the optimiza-
tion problem and the sparse step. After truncation, we find
that wt+1=[ws

t + τt ps
t yt xs

t , τt pn
t yt xn

t ]. Thus, we can con-
clude that:

�t = ‖wt − wwt ‖2 − ‖wt+1 − wwt+1‖2
≥ ‖ws

t − wws
t ‖2 − ‖ws

t + τt ps
t yt x

s
t − wws

t ‖2
−‖τt pn

t yt x
n
t − wwn

t ‖2
= −2‖τt ps

t yt x
s
t ‖2 · ‖ws

t − wws
t ‖2 − ‖τt ps

t yt x
s
t ‖2

−‖τt pn
t yt x

n
t − wwn

t ‖2 (18)

After initializing wn
t as a zero vector, the disappeared feature

space remains unobserved. By considering the expression
lt = 1 − yt (ps

t w
s
t xs

t + pn
t wn

t xn
t ), and lx

t ≥ 1 − yt (w
xt ·

xt ), We introduce ε = (wws
t xs

t + wwn
t xn

t )/(ps
t w

xs
t xs

t +
pn

t wxn
t xn

t ). Consequently, we have yt (ps
t w

xs
t xs

t ) = 1 − lt
and yt (ps

t w
xs

t xs
t + pn

t wxn
t xn

t ) ≥ (1 − lx
t )/ε. Here, ε repre-

sents a constant related to ps
t and pn

t . Combining these and
(18), we obtain:

�t ≥ 2τt‖(ps
t ytw

xs
t xs

t + pn
t ytw

xn
t xn

t ) − ps
t ytw

s
t xs

t ‖2
−τ 2t [(ps

t )
2‖xs

t ‖2 + (pn
t )2‖xn

t ‖2 − ‖wwn
t ‖2]

= τt {2lt − τt [(ps
t )

2‖xs
t ‖2 + (pn

t )2‖xn
t ‖2]

−2

ε
(lx

t − 1) − 2} − ‖wwn
t ‖. (19)

By considering the upper bound defined in (17) and the lower
bound specified in (19), we can conclude that:

T
∑

t=1

{τt {2lt − 2

ε
lx
t − 2(ε − 1)

ε
− τt [(ps

t )
2
∥
∥xs

t

∥
∥2+(pn

t )2
∥
∥xn

t

∥
∥2]}}

≤ ‖ww1‖2 +
T −1
∑

t=1

‖wwn
t ‖2 (20)

= ‖w‖2.

Hence, Lemma 1 is proved.

6 Experiments

In this section, we conduct an empirical evaluation to vali-
date the performance of our proposed algorithms, OLCDS
and OLCDS-I. Firstly, we present the details of the experi-
mental setup. Then, we compare the performance of our new
algorithms with some baseline algorithms, including 1) tra-
ditional online learning algorithms for fixed feature space, 2)
online learning algorithms for trapezoidal data streams; and
3) online learning algorithms for capricious data streams.
Finally, we give the parameter analysis of our new method.

6.1 Experimental setup

6.1.1 Datasets

In order to assess the performance of these competing algo-
rithms, we conducted experiments on ten datasets obtained
from machine learning repositories. The specific datasets
used in our study are listed in Table 2 and are readily available
for download from the UCI machine learning repository,1

accessible free of charge.

6.1.2 Evaluation metrics

In this paper, we adopt the Fβ -measure with β = 1 as the
default evaluation metric to assess the performance of our
algorithm. Inmany cases, Accuracy is a commonly usedmet-
ric in classification, which represents the ratio of the number
of correctly classified samples to the total number of samples.
However, in the case of class imbalance, Accuracy may give
misleading results. F-measure is a metric that considers both
Precision and Recall. Precision represents the proportion of
samples classified as positive that are truly positive, while
Recall represents the proportion of all truly positive samples

1 http://archive.ics.uci.edu/ml/
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Table 2 Experimental datasets

Data Set Instances Features

wdbc 569 30

splice 3190 60

credit-a 690 15

svmguide3 1243 22

spambase 4601 57

ionosphere 351 33

spect 267 22

libras 360 90

dermatology 358 34

arrhythmia 452 279

that are correctly classified as positive. F-measure is the har-
monic mean of Precision and Recall, which is more robust
to class imbalance. Therefore, choosing the F-measure as a
metric can better reflect the algorithm’s performance when
processing data streams. The specific calculation formula of
the F-measure is as follows:

F − measure = 2 ∗ Precision ∗ Recall

Precision + Recall
, (21)

where Precision = T P
T P+F P , Recall = T P

T P+F N , T P rep-
resents true positives, F P denotes false positives, and F N
represents false negatives.

To determine if there are significant differences in the pre-
diction of F-measure among these competing algorithms, we
conducted a Friedman test at a 95% significance level [44].
Rejecting the null hypothesis of the Friedman test indicates a
noteworthy disparity in performance among these competing
algorithms. Upon rejecting the null hypothesis, we employed
the Nemenyi test as a post-hoc test [44].

6.1.3 Competing algorithms

There are three types of competing algorithms: 1) Tradi-
tional online learning algorithms for fixed feature space data
streams: OGD [26] and RDA [45]; 2) Online learning algo-
rithms for trapezoidal data streams: OLSF [9]; 3) Online
learning algorithm for capricious data streams: OLVF [11]
and GLSC [20]. The parameter settings of these competing
algorithms are as follows:

– OGD(Online Gradient Descent): OGD is an itera-
tive optimization algorithm designed for large-scale and
dynamic datasets. Unlike traditional batch methods,
OGD updates the model parameters using single sam-
ples or small subsets, making it well-suited for real-time
learning scenarios. In OGD, we set α=0.01.

– RDA(Regularized Dual Averaging): RDA is a dual-
averaging method that combines stochastic gradient
descent and regularization techniques to solve machine
learning and optimization problems on large-scale data
sets. Thismethod provides an efficient optimization algo-
rithm through smooth and stable parameter updates and
regularization terms that control model complexity. In
RDA, we set λ=0.01.

– OLSF(Online Learning with Streaming Features):
OLSF is an algorithm specifically developed to optimize
the processing of trapezoidal data streams. These data
streams are characterized by a continuous and monoton-
ically increasing feature space. In experiments, we set
λ=30, B=0.1, C=0.1 for OLSF as the suggested values
in the original paper.

– OLVF(OnlineLearning fromVaryingFeatures):OLVF
expands trapezoidal data streams by transforming them
into Varying Feature Spaces. This expansion is accom-
plished by training a feature-space classifier, indicating
that the simultaneous inclusion of unobservable and
novel features can offer valuable discriminant insights.
In OLVF, we set B=0.5, C=0.01 as the suggested values.

– GLSC(Generative Learning with Streaming Capri-
cious): GLSC refines unobserved features by building
a generative graphical model, where a latent matrix is
maintained to establish correlations between observed
features. In GLSC, we set p = 0.5.

Our new algorithms have three parameters: λ, C , and B.
According to the parameter analysis in Section 6.5, the values
of C and B are specified in {0.001, 0.01}, and {0.16, 0.32},
respectively. Besides, we set λ=30 as an experience value,
which truncates wt to give the model good sparsity.

6.1.4 Implementation details

To simulate trapezoidal data streams, we split the dataset
into ten chunks, each carrying only 10% of the instances and
a different number of features. For example, the first data
block carries the top 10% of instances with the top 10% of
features. The second data block carries the second 10% of
the instances and another 10% of the features (20% of the
features in total).

To simulate capricious data streams, we randomly remove
features from each arriving instance xt . The ratio of the
removed features is denoted asα. For example,α =0.5means
that at most 50% of the features in xt are randomly removed.
In our experiments, the default value of α is 0.5.

Performance is measured in terms of F-measure. All
experiments were repeated 10 times with random permu-
tations on each data set, and all results reported here are the
average values.
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6.1.5 Computational device

All experimental results are conducted on a PC with AMD
5800X, 3.8 GHz CPU, and 16 GB memory.

6.2 OLCDS vs. fixed feature space data streams
methods

In this section, we compare our proposed algorithm OLCDS
and its variant OLCDS-I with traditional online learning
methods OGD [26] and RDA [45]. Our proposed algo-
rithms, OLCDS andOLCDS-I, are conducted in experiments
on capricious data streams, while OGD and RDA are in
the complete feature space data streams. All algorithms are
implemented in PYTHON. The parameters involved in the
comparison algorithm adopt the default values mentioned in
the paper.

Table 3 presents the F-measure values of these compet-
ing algorithms. Based on the Friedman test, the p-value of
the F-measure is 0.7083. Therefore, there is no significant
difference in the predictive values among these competing
algorithms in the case of F-measure. The critical difference
(CD) value is 1.48.

From Table 3, we can indicate that:

– OLCDS vs. OGD: According to the statistical test, no
significant difference exists between our new methods
and OGD in the case of F-measure. On datasets credit-a,
svmguide3, spambase, and ionosphere, both OLCDs and
OLCDS-I perform better than OGD.Meanwhile, the per-
formance of OGD is 2% higher than OLCDS on average.
However, it is worth mentioning that OGD is applied on
complete feature space while our new methods are con-
ducted on capricious data streams. Our new algorithms,
OLCDS and OLCDS-I, possess the distinct advantage
of accommodating unaltered feature spaces and arbitrary

changes in the feature space. As a result, our method
offers a broader scope of applicability.

– OLCDS vs. RDA: There is no significant difference
between our new methods and RDA in F-measure. On
datasets wdbc, splice, credit-a, svmguide3, and spam-
base, both OLCDs and OLCDS-I perform better than
OGD. RDA is about 2% higher than OLCDS on aver-
age. RDA is a dual-averaging method that combines
stochastic gradient descent and regularization techniques
to tackle machine learning and optimization problems
on data streams. However, like OGD, RDA is limited to
traditional online learning scenarios with fixed feature
space.

In summary, the performance of our algorithms is compa-
rable to traditional online learning methods. However, these
competing algorithms can only handle data streams with
fixed feature space, while our new algorithms can deal with
data streams with arbitrary changes in feature space. There-
fore, the applicability of our new algorithms is broader.

6.3 OLCDS vs. trapezoidal data streamsmethods

This section compares the proposed OLCDS and OLCDS-I
with an online learning method for trapezoidal data streams
(OLSF) [9]. All algorithms are implemented in PYTHON.
The parameters involved in the comparison algorithm use the
default values mentioned in the paper.

Table 4 gives these competing algorithms’ average F-
measure values in trapezoidal data streams. Based on the
Friedman test, the p-value of the F-measure is 2.06E-06.
Therefore, there is a significant difference in the predictive
values of these competing algorithms. The critical difference
(CD) value is 1.046. Figure 3 visually represents the sta-
tistical test conducted among these competing algorithms,
highlighting the observed variations.

Table 3 F-measure of OLCDS
vs. fixed feature space data
streams methods

Data Set OGD RDA OLCDS OLCDS-I

wdbc 0.937±0.010 0.894±0.006 0.932±0.010 0.930±0.007

splice 0.789±0.004 0.731±0.010 0.780±0.008 0.770±0.006

credit-a 0.787±0.014 0.753±0.012 0.795±0.010 0.800±0.012

svmguide3 0.346±0.008 0.320±0.004 0.521±0.014 0.524±0.010

spambase 0.676±0.003 0.656±0.007 0.847±0.005 0.842±0.004

ionosphere 0.714±0.011 0.787±0.013 0.772±0.017 0.746±0.013

spect 0.839±0.010 0.863±0.014 0.669±0.013 0.663±0.018

libras 0.848±0.014 0.901±0.011 0.671±0.014 0.679±0.012

dermatology 0.940±0.013 0.980±0.017 0.827±0.019 0.843±0.018

arrhythmia 0.907±0.014 0.893±0.021 0.774±0.017 0.732±0.011

AVG. 0.7784 0.7777 0.7588 0.7529

AVG. RANKS 2.2 2.6 2.5 2.7

The best results are highlighted in bold face in the tables
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Table 4 F-measure of OLCDS vs. trapezoidal data streams methods

Data Set OLSF OLCDS OLCDS-I

wdbc 0.903±0.005 0.914±0.008 0.904±0.013

splice 0.643±0.004 0.687±0.006 0.637±0.009

credit-a 0.618±0.013 0.642±0.012 0.631±0.015

svmguide3 0.478±0.017 0.511±0.019 0.479±0.013

spambase 0.754±0.006 0.787±0.004 0.744±0.005

ionosphere 0.721±0.016 0.778±0.013 0.735±0.031

spect 0.635±0.015 0.638±0.034 0.641±0.014

libras 0.593±0.018 0.667±0.012 0.639±0.022

dermatology 0.741±0.012 0.810±0.008 0.808±0.011

arrhythmia 0.697±0.014 0.748±0.011 0.747±0.014

AVG. 0.6783 0.7182 0.6965

AVG. RANKS 2.8 1.1 2.1

The best results are highlighted in bold face in the tables

From Table 4 and Fig. 3, we can indicate that:

– OLCDS vs. OLSF: According to the statistical test,
both OLCDS and OLCDS-I demonstrate significantly
superior performance compared toOLSF in the case of F-
measure. OLCDS consistently outperforms OLSF on all
datasets, indicating its effectiveness in handling trape-
zoidal data streams. The key reason behind OLCDS’s
exceptional performance lies in its ability to retain the
most essential weights and learn the most valuable infor-
mation. By prioritizing the most informative features,
OLCDS excels at capturing the essential characteristics
of the data streams, enabling it to handle trapezoidal pat-
terns effectively.

– OLCDS vs. OLCDS-I: Based on the experimental
results, no significant difference exists between OLCDS
and OLCDS-I on performance in F-measure. However,

Fig. 3 The statistical test graph of OLCDS and OLCDS-I vs. trape-
zoidal data streams methods

OLCDS performs better than OLCDS-I on nine of ten
datasets. The reason behind this performance advantage
lies in the initial stages of trapezoidal data streams. Dur-
ing this phase, the feature set consists of only 10% of the
total features, resulting in limited information for model
learning. The OLCDS algorithm adapts and learns from
the expanding feature set over time by effectively lever-
aging the available information. This adaptive learning
approach enables the model to enhance its understanding
of the data and ultimately achieve superior performance
compared to OLCDS-I.

In sum, by retaining the essential weights and learning the
most valuable information, OLCDS significantly improves
performance compared toOLSF for trapezoidal data streams.

6.4 OLCDS vs. Capricious data streamsmethods

In this section, we compare our proposed algorithms with
OLVF [11] and GLSC [20] on capricious data streams. All
algorithms are implemented in PYTHON. The parameters
involved in the comparison algorithms use the default values
mentioned in the papers.

Table 5 shows the average F-measure values of OLCDS,
OLCDS-I, and the comparison algorithms OLVF and GLSC.
The Friedman test was conducted to analyze the performance
of competing algorithms on capricious data streams. The
obtained p-value for the F-measure is 9.86E-07. Therefore,
there is a significant difference between these competing
algorithms. The value of the critical difference (CD) is
1.4819. Figure 4 visually presents the outcomes of the statis-
tical test, emphasizing the observed variations among these
competing algorithms.

From Table 5 and Fig. 4, we can indicate that:

– OLCDS vs. OLVF: Both algorithms perform better than
OLVF on all these datasets. OLVF is primarily designed
for processing data streams with regularly changing fea-
ture spaces and may struggle to handle data streams with
arbitrary changes in feature space effectively. On the
other hand, OLCDS excels in handling data streams with
changing feature spaces and those with arbitrary changes
in feature space.

– OLCDS vs. GLSC: According to the statistical test,
OLCDS and OLCDS-I significantly outperform GLSC
in the F-measure. OLCDS and OLCDS-I achieve higher
performance on nine of ten datasets than GLSC. It is
important to note that GLSC utilizes a graphical model
for classifier training, which requires a more significant
number of instances and features to achieve comparable
performance to OLCDS. Additionally, GLSC requires
more computing time to generate model classifiers.
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Table 5 F-measure of OLCDS
vs. capricious data streams
methods

Data Set OLVF GLSC OLCDS OLCDS-I

wdbc 0.909±0.013 0.905±0.010 0.932±0.010 0.930±0.007

splice 0.748±0.007 0.752±0.006 0.780±0.008 0.770±0.006

credit-a 0.783±0.011 0.794±0.012 0.795±0.010 0.800±0.012

svmguide3 0.495±0.012 0.484±0.007 0.521±0.014 0.524±0.010

spambase 0.810±0.003 0.851±0.004 0.847±0.005 0.842±0.004

ionosphere 0.730±0.011 0.728±0.014 0.772±0.017 0.746±0.013

spect 0.651±0.018 0.634±0.013 0.669±0.027 0.663±0.024

libras 0.593±0.011 0.578±0.017 0.671±0.017 0.679±0.015

dermatology 0.760±0.010 0.742±0.013 0.827±0.016 0.843±0.017

arrhythmia 0.690±0.005 0.687±0.011 0.774±0.016 0.732±0.013

AVG. 0.7169 0.7155 0.7588 0.7529

AVG. RANKS 3.3 3.5 1.5 1.7

The best results are highlighted in bold face in the tables

– OLCDS vs. OLCDS-I: There is no significant differ-
ence between OLCDS and OLCDS-I on these datasets
in the case of F-measure. Meanwhile, the average values
of OLCDS and OLCDS-I are very close. The main dif-
ference between these two algorithms lines in the slack
variables ξ in the quadratic objective function. Introduc-
ing these slack variables allows the algorithm to penalize
more significant errors and facilitate larger step sizes
during iterations, ultimately enhancing the classifier’s
performance.

In summary, OLCDS and OLCDS-I offer significant per-
formance improvements overOLVFandGLSCwhen dealing
with capricious data streams by preserving crucial weights
and learning the most valuable information.

6.5 Parameter analysis

In this section, we investigate the parameter sensitivity of
our algorithm using four data sets: wdbc, splice, credit-a, and
svmguide3. The algorithm relies on two crucial parameters:
the penalty cost parameter C and the proportion of selected
features B.

We conduct two sets of experiments to analyze the impact
of these parameters. In the first set, we keep B fixed at 1,
and vary C from 10−4 to 104, as shown in Fig. 5. In the
second set, we fix C at 1, and adjust B using values from
the set {0.04, 0.08, 0.16, 0.32, 0.64}, as shown in Fig. 6. By
systematically exploring the effects of different parameter
values, we aim to understand how C and B influence the
performance of our algorithm.

From Fig. 5, it is evident that our algorithm, OLCDS, and
OLCDS-I, are sensitive to changes in the value of C from

10−4 to 104. In total, the performance of both two algorithms
first increases and then declines. In the range of [10−4, 10−2],
the algorithms consistently are performing better and better
and achieving optimal performance. However, as the value of
C increases beyond this range, OLCDS andOLCDS-I gradu-
ally decline in performance. This sensitivity can be attributed
to the fact thatC determines the update step size τ . A smaller
value ofC enables a smoother change in the update step size,
preventing abrupt changes during optimization.

On the other hand, Fig. 6 depicts the performance of the F-
measure of our proposed OLCDS and OLCDS-I algorithms
under different values of B. From these two figures, we
can observe that the performance of our algorithms remains
largely unaffected by variations in the size of B. This robust-
ness demonstrates that our algorithm can handle different

Fig. 4 The statistical test graph ofOLCDS andOLCDS-I vs. capricious
data streams methods
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Fig. 5 F-measure of OLCDS and OLCDS-I varies with the penalty parameter C

feature subspaces effectively, highlighting its versatility and
reliability.

In sum, we set the parameter values of C and B in
{0.001, 0.01} and {0.16, 0.32} respectively in our experi-
ments.

7 Discussion

Based on the above analysis of theoretical and experimental
results, our new method has the following advantages:

– Effectiveness with superior online learning performance.
Experimental results from Tables 3, 4, and 5 and the sta-
tistical test Figs. 3 and 4 indicate the superiority of our
new methods in F-measure on these datasets compared
with other competing algorithms. Meanwhile, Lemma
1 theoretically proves the effectiveness of our proposed
methods.

– Efficiencywith low time and space complexity. Since our
new methods avoid generating missing features, they are
more efficient than existing online learning algorithms.
Besides, after identifying higher uncertainty features, we

formulate the constrained online optimization problem
based on the shared and new feature space between adja-
cent instances. In other words, our new methods do not
need to cache all instance data. The detailed time and
space complexity analysis indicates the efficiency of our
new methods.

– Adaptability for practical applications. Traditional online
learning methods assume the feature space of the stream-
ing instance remains fixed during learning. However,
some features may be missing in practical applications
for some reasons. Meanwhile, assuming that the feature
space changes regularly in practical applications is also
unreasonable. Therefore, since our new methods elim-
inate the need for feature space assumptions, they are
more adaptive to practical application requirements.

Of course, our new methods also have some limitations.
Although the empirical risk minimization principle is used
to solve the problem of missing or adding feature spaces in
capricious data streams, OLCDS and its variant OLCDS-I
algorithm are limited to learning linear decision boundaries,
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Fig. 6 F-measure of OLCDS and OLCDS-I varies with the proportion of selected features B

whichmay not performwell on nonlinearly separable data. In
addition, trapezoidal data streams and arbitrary data streams
represent only two examples of data streams with dynamic
feature spaces. In practical problems, datasets may involve
instances with completely different feature sets, i.e., mixed
feature sets, or their feature spaces may shrink over time.
Therefore, our futureworkwill explore newmethods to adapt
to irregularly changing feature spaces in these cases.

8 Conclusion

In this paper,we address the challengeof online learning from
capricious data streams, where the feature space of streaming
instances undergoes arbitrary changes. To tackle this prob-
lem, we propose a novel online learning algorithm named
OLCDS and its variantOLCDS-I for capricious data streams.
By comparing the feature space of adjacent instances, we get
the shared and new feature space at each timestamp. Then,
we identify the most informative features and formulate

the optimization problem based on shared and new feature
space. Our new method eliminates the need for feature space
assumptions and avoids generatingmissing features. To eval-
uate the effectiveness of our approach, we conduct extensive
experiments on ten real-world datasets and compare our new
method with three different types of online learning algo-
rithms. Experiment results and statistical tests validate the
superiority of our new algorithms.
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